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How does factual knowledge emerge during LLM pretraining?

\ Accuracy
/’ | |
[ Berlm e | LMs encode factual knowledge, yet the learning process remains opaque.
e Mechanistic interpretability methods let us identify the specific model components, namely attention heads and

Output FFNs, that drive factual recall.
g S~ ] e This study traces the evolution of these components over 40 snapshots of OLMo-7B.
Germany has the capital city of o
~ v MAIN Findings:
%(;[rfucl I 1. Task Complexity Influences Training Dynamics: Simple facts (e.g. locations) converge early in
pre-training, while more complex relationships (e.g., names) only emerge after sustained training.

2. Hierarchical Learning Process: The model initially leverages broad, general-purpose attention heads and
FFNs before progressively spawning specialized submodules dedicated to narrower fact types.

3. Adaptive vs. Stable Components: A subset of attention heads dynamically repurposes throughout training
to capture new information, whereas certain FFNs form a stable backbone that supports factual recall.

4. Evolving Specialization: Both attention heads and FFNs increasingly refine their roles, becoming more

k \ j loU& reliably tuned to specific categories of knowledge as training advances.
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Location-based Relations (LOC) General:

Relation Prompt Template # Facts Example Subject

CITY_IN_COUNTRY {} 1s part of the country of 14  Rio de Janeiro, Buenos Aires

COMPANY_HQ The headquarters of {} are in the city of 20  Zillow, Bayrischer Rundfunk

COUNTRY_CAPITAL_CITY {} has the capital city of 19  Canada, Nigeria

FOOD_FROM_COUNTRY  {} is from the country of 17  Sushi, Ceviche Entlty
OFFICIAL_LANGUAGE In {}, the official language is 14  France, Egypt )
PLAYS_SPORT { } plays professionally in the sport of 12 Kobe Bryant, Roger Federer

SIGHTS_IN_CITY {} 1s a landmark in the city of 17  The Eiffel Tower, The Space Needle

Name-based Relations (NAME)

Relation-
Answer:

Relation Prompt Template # Facts Example Subject

BOOKS_WRITTEN The Book {} was written by the author with the name of 13 The Hunger Games, Life of P1
COMPANY_CEO Who is the CEO of {}? Their name is 17  Ubisoft, Pinterest
MOVIE_DIRECTED The Movie {} was directed by the director with the name of 17  The Godfather, Forrest Gump

Grouped Accuracy Trends (LOC vs. NAME)
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Deactivated
T Components: Ha=C(HgUHe UH, UHy)

- NAME Top-1
-=- NAME Top-10

L0 @“’ o bg,»“"%&“’ R '@«“’ O PP ««%‘*’ P  Extract per-subtoken circuits using Information Flow Routes (Ferrando & Voita, 2024)
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Model Snapshots « We compute activation scores c¢, c;, C;, ¢, for each component at each snapshot, using subtoken sets

e Dataset: 160 facts spanning 10 relation types, each paired with a specific prompt template to guarantee T T T anda threshold @ = 0.1.
correct, unambiguous completions by the model.
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. o . « Then by successive differencing of cumulative importance sets J, — J, = J, — J;,, we obtain
e Accuracy Trends: Location-based facts reach near-perfect performance within the first few checkpoints,

. . . non-overlapping proper role sets H,, H,, H, and H,, with H, capturing all remaining deactivated components.
while name-based facts improve steadily across all 40 snapshots. Vetiapping prop g e W g Captuting & v p

How do Components Evolve?

Temporal Consistency and Role Dynamics of Components Dynamic Specialization and Generalization of Attention Heads
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Model Steps Model Steps Target Role
Switched Proper General Heads Lo Switched Proper Entity Heads 10 Categories
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n . S e Active Heads Increase from 113 (=11%) Frequent Role Cycling: Many heads repeatedly switch from inactive to specialized states (particularly
o to 423 (=41%) over training answer-specific), then deactivate again, while general-purpose heads stay stable or migrate into

e General-Purpose Heads maintain high relation-answer roles.
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. L . role consistency (IoU from ~0.3 to ~0.8) * Markov-Modeled Dynamics: Specialized heads often revert to general roles, but new specializations
. « Relation-Answer & Answer-Specific emerge faster than they deactivate.
I N . N Heads appear later but undergo frequent e Net Specialization Growth: The total number of specialized heads increases steadily during training.
s TREL L " o . turnover
Switched PropeieaRdeT;:zer:—Answer Heads . Switched Prop:: ZjnNsuv:z:Specific Heads . ° Layer-Wise Dynamics; ear]y/]ate ]ayers
o . o switch roles often; middle layers stay I Pa per I
. - a . 8 ST 8 stable
. ol : I o e Stable FFN Backbone: FFNs
L 6 i 6 overwhelmingly serve general-purpose
; ) " , f . functions throughout training
! - .
N ; | ;




